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Abstract-In the first part of the paper, Ernst Schmidt’s intuitive argument for choosing the optimum fin 
shape for least material is translated into analysis using the method of variational calculus. It is shown 
that even when the thermal #nducti~ty of the fin is a function of temperature, the optimum shape of an 
individual ‘heat tube’ of the tin is the unifo~ shape, i.e. the tube the geometry of which does not vary 
with the longitudinal position. This generalization of Schmidt’s argument is used in the search of optimum 
shapes for fins the materials of which have temperature-dependent conductivities. In the second part of 
the paper the analytical generalization of Schmidt’s argument is applied to the design of ducts for fluid 
flow. It is shown that the shape of a duct the flow pattern or temperature of which varies with the 
longitudinal position can be selected optimally such that the overall flow resistance of the duct is minimized. 
The optimization of the duct shapes illustrated in this paper is conducted subject to one of two constraints, 

constant total duct volume or constant total duct wall surface. 

1. INrRODUCTiON 

IN THIS paper we take a new look at a great idea 
contributed in 1926 by Ernst Schmidt, namely, the 
selection of the optimum fin shape that insures the 
maximum heat transfer rate per total fin volume [l]. 
Schmidt’s contribution came in the form of a short 
essay in which he discussed the maximization not of 
the total heat transfer rate but of the individual heat 
transfer rate through one of the many ‘heat tubes’ that 
make up the fin. He reasoned that the temperature 
distribution along each heat tube and along the fin 
should be linear, and used this conclusion in order to 
determine the optimum fin profile for maximum fin 
heat transfer per fin volume. 

Schmidt’s optimum fin solution was accepted on 
the basis of the original argument and became an 
integral part of the subfield of extended-surface heat 
transfer (see, e.g. Jakob [2] and Kern and Kraus [3]). 
A rigorous proof of the correctness of this solution 
was communicated in 1959 by Duffin [4], in whose 
view Schmidt’s intuitive argument “is not convin- 
cing”. Despite the existence of D&in’s rigorous 
proof, however, it is reasonable to expect that the 
heat transfer treatises of the future will continue to 
introduce Schmidt’s optimum fin design conclusion 
based on the original intuitive argument (for more on 
this, see the end of Section 7). 

t NATO Postdoctoral Feliow ; visiting from Lehrstuhl A 
fiir The~odynamik, Technische Universitit Miinchen, 
Arcisstr. 21, D-8000 Miinchen 2, Federat Republic of Ger- 
many. 

To aid in the future reference-level presentation of 
Schmidt’s idea was the original objective of the present 
study. In it we first sought to express in compact 
analytical form the original argument of how a heat 
tube transfers heat best. This we were able to do. We 
also discovered that the same argument can be used 
in order to optimally shape a fm the thermal con- 
ductivity of which is tem~rature dependent. These 
analytical developments, which are reported in Sec- 
tions 2 and 3, led us to the fluid-mechanics analog of 
Schmidt’s design problem. In Sections 4-6 we outline 
a procedure for choosing the optimum shape of a duct 
the total volume or wall material of which are fixed, 
and overall fluid-flow resistance of which is to be 
minimized. 

2. OPTIMUM TEMPERATURE DiSTRlSUllON 
FOR FINS WITH ARBITRARY TEMPERATURE- 

DEPENDENT CONDUCTIVITY 

The objective of this section is to express ana- 
lytically the intuitive argument that was advanced 
in essay form by Ernst Schmidt 113. An additional 
objective is to show that Schmidt’s argument holds 
not only for materials with constant thermal con- 
ductivity-the existence of which is assumed routinely 
in extended-surface analysis-but also for materials 
with an arbitrary relationship between conductivity 
and temperature, k(T). 

Consider the unidirectional conduction through the 
slender solid element (‘heat tube’ in Ernst Schmidt’s 
te~inolo~) sketched in Fig. 1. The cross-sectional 
area normal to the heat current q is an unspecified 
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NOMENCLATURE 

a coefficient, k/T 

A cross-sectional area of the heat tube, 
Fig. 1 

A cross-sectional area of the duct, 
equations (28) and (29) 

CI>...,Cb constants 

% specific heat at constant pressure 
C,, C?, C, constants 
D diameter 

J% hydraulic diameter 

.f friction factor 
Z, I,, I,, I,, I, integrals 

thermal conductivity 
length 
mass flow rate 
wall material (surface) constraint, 
equation (24) 
Nusselt number, equation (45) 

k 

L 

ril 
M 

Nu 

P 

ftd 

P 

Y 
R 

Re 

s 

T 

Ti 
AT 

wetted perimeter of the fin cross-section 
wetted perimeter of the duct cross- 
section 
pressure 
heat transfer rate 
duct flow resistance 
Reynolds number 
cross-sectional area of the fin, Fig. 2 
absolute temperature 
ambient fluid temperature 
temperature difference 

i.’ fluid velocity averaged over the duct 
cross-section 

V volume constraint, equation (I) 
W width of the flat rectangular cross- 

section of a duct 
x longitudinal coordinate. 

Greek symbols 
Q thermal boundary potential, 

equation (5) 
/i,I,,i.,,/I,,J., Lagrange multipliers 
V kinematic viscosity 

P density 
z dimensionless temperature ratio, To/T, 
?V wail shear stress 

function of longitudinal position 
shorthand notation for In (TJT,). 

Subscripts 

( )constant-D associated with a round tube of 
constant diameter 

( 11 associated with constant thermal 
conductivity 

i ;‘. 
property at x = L 

m,R associated with a round-cross-section 
duct of optimum diameter 

( )o*t optimum 
( )0 property at x= 0. 

A(x) 

We can demonstrate the validity of this result ana- 
’ r3 -~~ ’ lytically by first w~~~~~~~ 

/ 

11 

/ 

x=0 %.=L 

TO TL 
and noting that q is not a function of x. Integrating 

FIG. 1. One-dimensional conduction through a heat tube of 
fixed length and volume. 

equation (3) over the entire path traveled by y. we 
obtain 

function of longitudinal position, A(x). The heat cur- 
rent is driven by the temperature difference ( T0 - Z’,), 

l;;&= ;fi:lk(T)dT. (4) 

which is applied between the x = 0 and L ends of the The thermal conductivity integral appearing on the 

heat tube. The length of the heat tube (L) and its total right-hand side may be rewritten using Garwin’s ‘ther- 

volume (V) are fixed ma1 boundary potential’ function [S] 

s 

L 
A(x) dx = V, constant. U) O(T) = k(T’) dT’ (5) 

0 

Schmidt argued that the optimum heat tube shape and the result is 
that maximizes the heat current through a heat tube 
of fixed volume and length is the ‘uniform’ shape, 

f 

L dx @(TLl)-Q(T,J 

which in the present terminoIogy is written as 0 A(x) 4 . 
(6) 
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The physical meaning of this result is that the heat 
current q is driven by the thermal boundary potential 
difference 6( TO) - 13( TL) across a thermal resistance of 
size 

The analytical counterpart to Ernst Schmidt’s argu- 
ment is the variational calculus problem consisting of 
finding the optimum function A(x) that minimizes the 
thermal resistance integral of equation (6) subject to 
volume integral (1). The problem is equivalent to 
minimizing the aggregate integral 

I=&+iA)dx (7) 

subject to no constraints [6]. Note in the integrand of 
this new integral the Lagrange multiplier 1 and the 
integrands of the original volume constraint (1) and 
thermal resistance integral (6). The variational cal- 
culus solution to minimizing Z is straightforward 

A,,, = 1- I/‘, constant (8) 

for which the constant A-‘/’ is determined by sub- 
stituting equation (8) into volume constraint (1). The 
final form of the solution obtained in this manner was 
given already in equation (2). 

The implications of this result in the design of 
extended surfaces have been exploited already by 
Schmidt and his successors [l-3]. The design of fins 
of optimum protile (where ‘optimum’ means maximum 
total fin heat transfer subject to fixed fin volume) 
begins with viewing the fm as a bundle of heat tubes 
of the type analyzed in Fig. 1, and seeing that the 
temperature distribution along each tube must be 
linear, provided k = constant (compare equations (2) 
and (3)). The optimum fin profile emerges after 
substituting the constant-dT/dx conclusion into the 
differential energy equation for the fin. 

The design conclusions associated with the pre- 
ceding analysis are more general, as the variational 
calculus solution (2) applies to a conducting heat tube 
of arbitrary conductivity, k(T). Optimum fin profiles 
may be pursued in the same manner as in the post- 
Schmidt work, that is, by combining the differential 
energy equation of the extended surface with the con- 
clusion 

k(T) g = constant (9) 

where k is now a known function of T. The above 
conclusion follows from equations (2) and (3). The 
optimum temperature distribution along the heat tube 
of Fig. 1 (and along the fins considered later) is 
obtained by solving equation (9) for the unknown 
function T(x). 

X.0 x=L 
(a) 

aphT2 
- S(X) 

lea: 

1.0 .- 

0.6 .- 

0.4 -- 

lb) 

FIG. 2. Optimum profiles for a two-dimensional hn the 
thermal conductivity of which is proportional to the absolute 

temperature. 

3. OPTIMUM FIN SHAPES (PROFILES) FOR 

FINS WITH VARIABLE CONDUCTIVITY 

As an example consider the design of copper fins 
for heat exchangers operating at low temperatures, 
e.g. in the range between the normal boiling points 
of helium and hydrogen. At such temperatures the 
conductivity of copper of high purity is proportional 
to the absolute temperature [7J In this case if we inte- 
grate equation (9) we obtain a longitudinal tem- 
perature distribution of the type 

T = (c,x+c~)“‘. (10) 

The energy equation for a fin of arbitrary cross-section 
S(x) and wetted perimeterp(x) exposed to an external 
fluid (Tf> across a constant heat transfer coefficient (Zr) 
is 

&[k(T)S(x)g] -p(x)h(T-T,) = 0. (11) 

In the first part of this example we consider a fin of 
two-dimensional geometry (Fig. 2), the wetted per- 
imeter p of which is a constant. Combining equations 
(9)-( 11) we obtain 
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dS ph __=-----------_ 

dx k(T): 

[(c,x+cz)‘!2-Tr] (12) 

which yields the following solution for the optimum 
fin profile S(X) of Fig. 2 : 

S= 
Ph 

d* 1 + ci. (13) 

k(T) z 

The three constants (c,,c2,cj) are determined from 
the following three conditions : 

(a) the base temperature condition T = r, at 
x = 0, which yields 

Cl = 2-i; (14) 

(b) the heat flux condition q = 0 at .X = L, which 
yields 

c3 = 1 ; (15) 

(c) the condition of minimum fm volume 
dV/dL = 0, which yields 

T;-T; 
c, = --.. 

L 
(16) 

Since the thermal conductivity is proportional to the 
absolute temperature, k(T) = aT, the resulting solu- 
tion S(X) can be cast in the form 

i[ 
(l-+r’ 

312 

x 1 II - 1 (17) 

where z = To/T,. If, instead of specifying a fin length, 
L, we fix the base heat flux (q = q. at x = 0) then L 
can be expressed as 

L = $g &gTG. 
0 

(18) 

Figure 2 shows a sample of fin profiles based on 
equations (17) and (18) in dimensionless form. The 
abscissa is negative for r < I because q. is negative. 
Fins become increasingly more slender and shorter if 
z (> I) increases or z (< 1) decreases. In the special 
limit r -+ 1 both L and S(x = 0) tend to infinity. This 
feature is present also in Schmidt’s solution [ 11, which 
in the present nomenclature reads 

Ph x ,* Sk=&: & ( > -- 
Lk =&s. 

(19) 

Subscript k refers to the assumption of constant con- 
ductivity in Schmidt’s solution. 

Table 1. Comparison of the optimum fin lengths and base 
cross-sections calculated for fins with variable conductivity 

(L, S) and tins with constant conductivity (Lk, Sk) 

In order to compare the present profiles with 
Schmidt’s solution we must first select a method for 
estimating the effective ‘constant k’ of a fin the 
conductivity of which actually varies as k = UT. 
Three possible rules are presented below 

I. k=nT, 

III. k = UT,. (21) 

Table 1 shows the relative size of the fin lengths and 
base cross-sections suggested by Schmidt’s and the 
present sohttion. The numerical values listed in the 
table have been rounded off to no more than two 
decimal places. When r = 1 the two solutions are in 
perfect agreement. When z + I the optimum constant- 
k Iin design depends on the estimated value of k, 
especially for large and small z’s In each case, the 
second method (see II in equation (21)) proves to be 
the best way to evaluate the effective constant con- 
ductivity. 

In the second part of this example we consider the 
design of a spine the geometry of which at any .X is 
dictated solely by the local diameter D(x). Noting that 
S is proportional to D2 and that p N D, we combine 
equation (11) with equations (9) and (10) to obtain 
an equation for D(x) 

dD 
-= -/h__[(c!x+cI!I,:.-Ti]. 

dx k(T) ;f 

(22) 

This equation is of the same type as in the case of two- 
dimensional fins, equation (12). Solving equation (22) 
and invoking the same three conditions as in the pre- 
ceding example, we obtain the optimum diameter for 
a spine the conductivity of which is proportional to 
the absolute temperature 
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The discussion of equation (23) is analogous to that 
of equation (17). It is worth mentioning that the 
shapes D(x) and 2S(x)/p are identical if L is fixed. 

4. THE DUCT FLOW PROBLEM: OPTIMUM 

DUCT GEOMETRY FOR MINIMUM FLOW 

RESISTANCE 

In this and the remaining sections of the paper we 
exploit the fluid mechanics implications of the heat 
tube analysis centered around Fig. 1. In brief, that 
analysis showed that when the total volume of the 
heat tube is constrained there exists an optimum heat 
tube geometry that minimizes the overall thermal 
resistance across the tube. We have reasons to expect 
the existence of an equivalent optimum geometry in 
the design of an actual duct for the flow of a stream 
(A) between two pressure levels (P, and PJ separated 
by a fixed distance L. 

In the search for optimum duct geometries there 
are at least two constraints to consider, first, the duct 
volume constraint (which is written exactly the same 
way as in equation (l)), and second, the duct wall 
material constraint 

I 

L 
o P&) dx = M (24) 

where pd(x) is the wetted perimeter of the duct cross- 
section A(x). Volume constraint (1) is most relevant 
in the design of compact heat exchangers, where the 
volume occupied by the heat exchanger is an impor- 
tant design constraint (e.g. heat exchangers for the 
power plants of navy ships and submarines). Duct 
material constraint (24), on the other hand, is crucial 
in designs where the cost of the duct material is high 
(e.g. high-purity copper) or where the weight of the 
overall heat exchanger is constrained (e.g. heat ex- 
changers for airborne and space applications). 

It remains to show that the flow resistance through 
a duct of fixed length (L) and overall pressure drop 
(P,-P,) is given by a geometry-dependent integral 
similar to the one encountered in the case of a heat 
tube, equation (6). Regardless of whether the duct 
flow is laminar, turbulent or fully developed, the local 
pressure gradient along the duct is 

dP 

z= (25) 

where t, is the frictional shear stress averaged over 
the wetted perimeter pd. Using the usual definitions 
for friction factor, Reynolds number, mass flow rate 
and hydraulic diameter 

f=2i 
:Pu2 

Re = Dh” 
V (27) 

rh=pUA (28) 

Dh2 
Pd 

(29) 

in which U is the velocity averaged over the duct 
cross-section, pressure gradient formula (25) can be 
integrated from x = 0 to L. What results is an integral 
expression for the overall duct-flow resistance 

PO--PL ----= 
ti e&dx (30) 

which is the duct-flow equivalent of thermal resistance 
formula (6). 

The integrand of the above integral is in general a 
function of x. This dependence follows directly from 
the x-dependent geometry of the duct (Pdr A, Dh) and 
from the possible longitudinal development of the 
flow (as shown in the next section, in the entrance 
region of a duct the product f Re decreases along x). 
The integrand of the integral in equation (30) depends 
on x also indirectly, via the temperature-dependent 
property v : if the duct is part of a heat exchanger the 
bulk temperature of the fluid varies with x, and so does 
v. In what follows we consider all these possibilities 
separately as we seek the minimization of flow resist- 
ance integral (30) subject to either fixed volume (1) or 
fixed duct wall surface (24). 

5. THE OPTIMUM SHAPE OF 

HYDRODYNAMIC DUCT ENTRANCE 

REGIONS 

Consider as a first example the hydraulic entrance 
region to a duct of round cross-section (diameter 
D(x)) through which the flow is isothermal such that 
v may be regarded as constant. Note further that since 
the cross-section is circular D,, is equal to D, while 
pd = aD and A = IZD ‘14. It follows that the geometric 
group pd/(A ‘0,) appearing in equation (30) scales as 
D-4. 

In the developing entrance region of a tube of con- 
stant diameter the group f Re decreases approxi- 
mately as x- ‘I*. This group is usually plotted in 
dimensionless terms vs x/(D Re) (see, e.g. ref. [S]). In 
the present problem D is not a constant-in fact, to 
find the optimum function D(x) is the object of the 
analysis. Consequently, instead off Re we write #J(X), 
where the function 4 could be determined in principle 
after the duct shape D(x) is known. If the duct shape 
D(x) turns out to be a weak function of x, that is, if 
the duct diameter is nearly constant throughout the 
0 < x < L domain, then it is reasonable to expect 4 
to decrease as x- ‘I’. We return to this observation at 
the end of this section. 

As a summary to the preceding two paragraphs we 
conclude that the integrand of equation (30) behaves 
as 4/D4. On the other hand, the integrand of volume 
constraint (1) varies as D2. The problem of finding 
the function D(x) that minimizes the flow resistance 
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(30) subject to the fixed volume (1) reduces to mini- 
mizing the integral 

I, =l($+&D2)dx (31) 

where i;, is another Lagrange multiplier. The solution 
has the form 

(32) 

where, assuming that b(x) is known, the constant 
d, is determined by substituting equation (32) into 
volume constraint (I). 

We develop a better feel for the optimum duct shape 
prescribed by equation (32) by assuming that 4, is a 
sufhciently weak function of x so that we may take 
.-‘I2 as the x-dependence of the function 4. Com- 
bining this assumption with equation (32) we con- 
clude that Dopt must vary approximately as x- Ii’ *, 
which is indeed a weak function of longitudinal 
position. It means that equation (32) reads approxi- 
mately 

Do,(x) g (constant)x-’ “‘* (33) 

in other words, for minimum flow resistance the 
entrance region to a pipe should be shaped like a very 
long trumpet. The constant listed in equation (33) is 
easily determined from volume constraint (1), so that 
the closed-form conclusion of this first example is 

A similar conclusion is reached if the flow resistance 
of the same entrance region is minimized subject to 
the wall surface (material) constraint (24). The start 
of the variational calculus problem is the aggregate 
integral 

and, following the same logic that led to equation 
(33), the end result is the optimum entrance region 
shape 

The entrance regions of other duct geometries may 
be optimized in the same way. If the duct cross-section 
is a flat rectangle of height D(x) and constant width 
W, such that W >> D(x), the grouppd/(tl 2D,) ofequa- 

t A pressure drop exists along any duct with fiuid flowing 
through it. The ‘constant pressure’ assumption made here 
means that the pressure drop (P,--P,) is negligible com- 
pared with the absolute pressure level PP 

tion (30) varies as l/(D 3 W). Assuming that the x- 
dependence of D is sufficiently weak, the f Re product 
may be recognized again as a function proportional 
to x- ‘I’. The optimum D(x) function that minimizes 
the flow resistance integral (30) subject to volume 
constraint (1) turns out to be 

(37) 

The optimum entrance shape is such that the ‘plate- 
to-plate’ spacing D tapers down very slowly as the 
flow develops downstream. 

If instead of the volume we keep the total duct wall 
surface fixed 

s 

I. 
2Wd.x = M 

0 
(38) 

we find first that the M-constraint does not depend 
on the narrow spacing of the duct cross-section, D. 
This means that an optimum wall-to-wall spacing 
function D(x) does not exist. Instead, we may consider 
D as constant and the cross-section width W variable, 
while L) remains negligible with respect to W(x). The 
optimum entrance width that minimizes the overall 
flow resistance subject to constraint (38) is 

(39) 

This optimum entrance geometry is one in which the 
width of the Aat cross-section decreases gradually in 
the flow direction, while D remains constant. 

6. THE OPTIMUM SHAPE OF DUCTS Wll”H 

LONGITUDINAL TEMPERATURE VARIATION 

The exampIes treated in the preceding section were 
all based on the assumption that the duct is isothermal 
and the viscosity v is constant. The existence of opti- 
mum duct shapes was traced to the ‘developing’ 
nature of the flow, that is, to the x-dependence of the 
group f Re in the entrance region. In the current 
section we consider the reverse situation and assume 
the fully developed laminar flow through a duct the 
longitudinal temperature distribution 7’(x) of which 
is known. Examples of heat exchangers in which T(x) 
does not depend on the hydraulic design of the flow 
passage are presented later in this section. 

For the sake of simplicity we consider a circular- 
cross-section duct of diameter D(x). The duct is long 
and slender enough so that the flow may be treated as 
fully developed with constant .f Re at any longitudinal 
location x (note that for a round cross-section 
f Re = 16). We further assume that the fluid is an 
ideal gas and note that at constant pressure the kine- 
matic viscosity of this fluid increases as T’-’ f7J.t 

In summary, the integrand of the Ilow resistance 
integral (30) varies as T’.7/D4, where T(x) is known 
and D(x) is to be selected optimally. If this selection 
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is subjected to volume constraint (1), the problem 
reduces to minimizing 

I,=l($+&D2)dx (40) 

and the solution is 

D 
Opt 

(x) = (constant)T’.7’6(x). (41) 

The constant coefficient is easily determined from vol- 
ume integral (1). On the other hand, if the search for 
D+(X) is subjected to fixed duct surface or material, 
equation (24), the analysis begins with minimizing 

z4 = ++ &D dx 

and ends with 

D 
Opt 

(x) = (constant)T’.“‘(x) (43) 

where the ‘constant’ coefficient is different from the 
coefficients noted already in equations (41) and (33). 

The combined message of the results of equations 
(41) and (43) is that when the absolute temperature 
varies significantly along the duct the optimum duct 
diameter also varies noticeably between x = 0 and 
L. This variation is such that the duct opens up (D 
increases) toward the warm temperature end of the 
duct. These conclusions invite us to think first of cryo- 
genic engineering applications in which heat ex- 
changers span large intervals on the absolute tem- 
perature scale. One specific example is the main coun- 
terflow heat exchanger of a helium liquefier. The low 
pressure stream of the counterl-low flows through the 
duct analyzed already in this section (length L, dia- 
meter D, temperature distribution T(x)). The high 
pressure stream flows toward low temperatures and, 
at any x, its temperature exceeds the temperature of 
the low pressure stream by the temperature difference 
AT. It is easy to prove that AT is constant (i.e. x 
independent) when the counterflow is balanced, that 
is, when the capacity rate ljlcP is the same for both 
streams. 

Of interest is the longitudinal T(x) distribution dic- 
tated by the counterflow heat exchanger arrangement 
described above. Assuming that the stream-to-stream 
temperature difference is dominated by the tem- 
perature difference between the low pressure stream 
and the duct wall that surrounds it, the first law for 
the low pressure stream may be written as 

ticP dT = hp,ATdx. 

The heat transfer coefficient is in this case 

(44) 

h=;Nu 

where Nu is a constant (recall the constant-f Re 
assumption made earlier) and where the thermal con- 
ductivity k increases as To.’ [7J The integral of equa- 
tion (44) reads 

On the right-hand side of equation (46) we note the 
constant integrand p&)/D(x) = a. In view of every- 
thing else mentioned until now, equation (46) suggests 
a duct temperature distribution of the form 

T(x) = T,(l +cz,x) “o.3. (47) 

The value of the constant cq can be identified by car- 
rying out the two integrals appearing in equation (46). 

In conclusion, combining equation (47) with the 
earlier results (41) and (43) we learn that the optimum 
tube shape at constant total volume is 

D,,,(x) = c,(l +c~x)‘.~~ (48) 

and at constant total duct surface 

D,,,(x) = c~(~+c~x)‘.‘~. (49) 

The new constants cg and cg follow again from the 
respective integral constraints, equations (1) and (24). 
These constants should not be confused with the con- 
stants used in the optimum fin solutions of Section 3. 

An even simpler example of a cryogenic heat ex- 
changer with prescribed longitudinal distribution is 
the single-stream cooling effect required by various 
features of thermal insulation (mechanical supports, 
radiation shields, electrical cables, etc. [9]). The dis- 
tribution of temperature along the thermal insulation 
between To and T, (and along the duct that guides 
the coolant ti) is determined purely thermo- 
dynamically by minimizing the heat transfer irre- 
versibility of the heat leak path provided by the insu- 
lation. 

If, for example, the ‘insulation’ is a long mechanical 
support with constant thermal conductivity, the ther- 
modynamically optimum distribution T(x) along the 
support is 

T(x) = T,exp ;lng I 1 . (50) 
0 

This temperature distribution can be maintained by 
placing the conduction heat leak of the support in 
counterflow with a stream with constant capacity rate 
ticP (e.g. a single stream, ti, containing an ideal gas 
with constant specific heat). The T(x) distribution of 
equation (50) is considerably more general: it rep- 
resents also the optimum cooling required by a con- 
stant-k electrical power cable that stretches from To 
to TL [lo]. Note that in this application the prescribed 
T(x) distribution (50) is independent of the electrical 
current level and Joulean heating in the cable. 

It is a simple matter to determine the coolant pas- 
sage geometry D(x) that minimizes the overall fluid 
flow resistance in the heat exchanger required for 
maintaining equation (50). Combining equations (41) 
and (50) we find that the optimum duct diameter for 
a duct with fixed total volume (V) is 
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4&> = L 4V (1,7/3)ln(T,/T,) “’ 
- 
71L (T[,/Tfi)' 7/j-l 1 

(51) 

Likewise, equations (43) and (50) deliver the optimum 
flow passage geometry for a minimum duct wall sur- 
face 

M (1.7/5)ln(T,IT,) 
D,,,(x) = - -__ 

7cL (T,/T,)'."5- 1 

(52) 

In either case the optimum passage geometry is one 
in which the tube diameter increases toward the warm 
end of the heat exchanger. This effect is particularly 
noticeable in ducts spanning high TJT, ratios, as is 
illustrated in the next section. 

7. CONCLUDING REMARKS 

Starting out with the analytical rewording of Ernst 

Schmidt’s original argument we developed first an 
extension of his fin design method to variable-con- 
ductivity fin materials. We then constructed the ‘duct 
flow’ analog of Schmidt’s ‘heat tube’ and, on the basis 
of examples, we illustrated the search for optimum 
duct geometries that minimize the overall fluid flow 
resistance posed by the duct. 

If the resulting optimum duct size is only a weak 
function of longitudinal position (e.g. equation (34)), 

we can expect a very small difference between the 
minimum flow resistance secured by the optimum 
design and the resistance associated with the much 

simpler design in which the duct size is independent 
of X. On the other hand, if the optimum duct size 
depends strongly on x the optimum design method 
presented here yields significant savings in pumping 
power relative to the uniform-duct-size design. The 
way in which the value of this design methodology 
varies from one application to the next can be illus- 
trated by considering the last example, for which the 
optimum duct diameter for fixed total volume is given 
in equation (51). The minimum flow resistance (30) 
associated with this optimum duct geometry is 

in which 

v _ = C T’.l 

2 ’ (54) 

f Re = constant (55) 

(56) 

FIG. 3. The relative savings in flow resistance associated with 
the optimum shaping of the flow passages of cryogenic heat 

exchangers. 

(57) 

Abbreviating equation (51) as 

D,,, = C, exp [(1.7,/6)$fIl (51’) 

integral (53) leads eventually to 

where 

C2=C,T:',fRejih. (5% 

The minimum flow resistance estimated above can 
be compared with the resistance of a duct the ‘con- 
stant-D’ geometry of which satisfies the same total 
volume constraint 

R constant-II = (60) 

Omitting the algebra, the final result can be expressed 
in terms of the quantities defined in the preceding 
paragraph 

R 
C2 exp(1.71//)-1 exp[(1.7/3)$]-1 ’ 

constant-,J =- 
C:L1.7i-- I--- --~~~ (1.7/3M I 

(61) 

so that the ratio of the two resistances becomes a 
function of only the temperature ratio T,,!T, (note 
the shorthand notation t,G = In T,,/T,) 

Figure 3 shows the way in which R,,, and Rcon,tant_o 
compare as TL/To increases. The minimum resistance 
associated with the optimum design decreases dra- 
matically towards the cryogenic engineering end of 
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the TJT,, scale, that is, when TJT,, > 10. In that post-1974 debate and, in this paper, at least, does not 
range, the R ratio (62) increases asymptotically as 0.11 champion the supremacy of Schmidt’s design over the 

(In TJTd*. more recent developments. 
In conclusion, the optimum shaping of the flow 

passages of cryogenic heat exchangers (high T,/T, 
ratios) promises significant savings. Of course, 
nobody is suggesting the manufacture of trumpet- 
shaped tubes according to equations (51) and (52). 
Nevertheless, savings comparable to those predicted 
in Fig. 3 can be achieved by constructing a heat ex- 
changer passage the size of which varies in steps, in a 
way that mimicks the smooth D(x) function obtained 
analytically. The optimization of stepped-size heat 
exchanger passages can be pursued in the same man- 
ner as in Sections 4-6 of this paper : the only difference 
will be that the variational calculus problem will be 
replaced by the problem of solving a system of equa- 
tions for all the unknown size steps of the duct. 
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APPROCHE D’ERNST SCHMIDT POUR L’OPTIMISATION D’AILETTE : EXTENSION 
AUX AILETTES AVEC CONDUCTIVITE VARIABLE ET CONCEPTION DE CANAUX POUR 

ECOULEMENT DE FLUIDE 

R&r&--Dans la premiere partie, I’argument intuitif de E. Schmidt pour choisir la forme optimale a 
moindre mat&e est traduite dans une analyse utilisant la m&ode du calcul variationnel. Meme lorsque 
la conductivite thermique de l’ailette est fonction de la temperature la forme optimale dun “tube individuel 
de courant” dans l’ailette est celle uniforme, c’est-a-dire le tube dont la geometric ne varie pas avec la 
position longitudinale. Cette gineralisation de I’argument de Schmidt est utilisQ dans la recherche de 
formes optimales des ailettes dont le matbiau a une conductivite variable avec la temperature. Dans la 
seconde partie, on considire des canaux dam lesquels circule un fluide. On montre que la forme dun canal 
pour lequel la configuration de l’ecoulement et la temperature varient longitudinalement peut etre optimisee 
de telle fa9on que la resistance globale du conduit soit minimisee. L’optimisation des formes du conduit 
illustree ici est conduite avec une des deux contraintes, volume total constant du conduit ou surface totale 

de la paroi constant. 
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DER ANSATZ VON ERNST SCHMIDT ZUR RIPPEN-OPTIMIERUNG- 
ERWEITERUNG AUF RIPPEN MIT VERANDERLICHER WliRMELEITFAHIGKEIT UND 

DIE GESTALTUNG VON STROMUNGSKANALEN 

Zusammenfassung-Im ersten Tcil der Arbeit werden die intuitiven SchluRfolgerungen von Ernst Schmidt 
zur Wahl einer optimalen Rippenform fur minimalen Materialverbrauch unter Benutzung der Methode 
der Variationsrechnung analytisch umgesetzt. Selbst wenn die Warmeleitfahigkeit der Rippe tcm- 
peraturabhlngig ist, ergibt sich als Optimum eine Rippe von unveranderlicher Form, d. h. ein Rohr. dessen 
Geometrie sich in Langsrichtung nicht Indert. Die Verallgemeinerung wird bei der Ermittlung einer 
optimalen Rippenform fur den Fall verwendet, dab das verwcndete Material eine temperaturabhangige 
Leitfahigkeit aufweist. Im zweiten Teil der Arbeit wird die analytische Verallgemeinerung der Schmidt’schen 
SchluDfolgerung auf die Gestaltung von Stromungskanalen angewdndt. Es wird gezeigt, da8 die Gestalt 
eines Kanals, in dem sich Stromungsform oder Temperatur mit dcr Lautlange verandern, so optimiert 
werden kann, dab der Gesamtstriimungswiderstand tin Minimum erreicht. Die Optimicrung der 
beschriebenen Kanalformen wird entweder bei konstantem Kanalvolumen oder bei konstanter Kana- 

wandoberflache durchgefiihrt. 

OIITMMM3AIJHR PEEPA METOAOM 3PHCTA IIIMHATA: PACIIPOCTPAHEHHE 
METOJJA HA CJIYqAfi PEBEP C I-IEPEMEHHOR TEI-IJIOlTPOBO~HOCTbIO M 

TPYEOIIPOBO)JbI 

Asmoraunn-B nepBOti 'KiCTB pa6OTblAHTyEiTHBHbd MeTOE, 3pHCTa ~MWtTa JUUI BbI60pa OnTHMab- 
HOii @OpMbI pe6pa C MHHHMUIbHOii 3aTpaTOfi MaTepHaJIa CBOAHTCIl K aHaJIU3y C WnOJIb30EaHBeM 

MeTona aapeaueomrbrx ricsricnemil. IIoxa3ari0, 970 aaxce B TOM cnyqae, Korna TennonpoBonHocTb 

pe6pa eCTb @yHKUUR TeMnepaTypbI, OnTHMaJIbHaK $OpMa CXViHH’tHOfi LITpy6KB TOKa" XBnleTCIl 

O6bIYHO~,T.e.npencTaBn~eTco6oti rpy6~y,reoMeTper KOTOpOti He MeHneTCn B 3aBHCUMOCTH OT npono- 

nbHor0 nonoxeHHn. 3To o6o6uewe MeTona lIIMru.nTa acnonb3yeTcn npa 0TbIcKaHHn onTwanbHoi2 

+OpMbI pe6ep,BbInOnHeHHbIX B3 MaTepHUIOB C TenJIOnpOBO~HOCTblO,3aBWSllIIeti OT TeMnepaTypbI. Bo 

BTOpOfi 'IaCTR pa6oTbr aHaJIHTH'IeCKOe o6o6ueHue MeTOLGi UIMUIHLITB IIpHMeHReTCSI IlJlS KOHCTpyHpOBa- 

HBR TpyGonpoeonoe. lloKa3aH0, YTO @opMa Tpy60npoBona, pexruh9 TeqeHxx nnu TeMnepaTypa B 

KOTOPOM U3MeHReTCII B npO,Y,OnbHOM HanpaBJIeHH&i, MOXeT 6bITb OnTHMH3HpOBaHa TaK,YTO6bI 06mee 

r~npaBnuwCKoeconpoT~BneHae B Tpy6onpoBone 6bIno cBeneH0 K hf~i~~~y~y.ElpencTaBneH~a~~ onTli- 

MH3aUWR (POpMTpy60npOBO~anpOBelleHaC y4eTOM OAHOrO BJIH ,UByX OrpaliH9eHEifi:nOCTOffHHbti-iCyM- 

MaPHbIii06W.MTpy60npOBO~aH~UnOCTOIlHHaR o6uxaanOBepXHOCTberOCTeHOK. 


